Graphing Quadratics stations handouts

Station \#

Equation

Characteristics	
Domain?	
Range?	
Vertex?	
Is the vertex a maximum or minimum point?	
Axis of symmetry?	
Intervals of increasing?	
Intervals of decreasing?	
x-intercepts (zeros)?	
y-intercepts?	
End behavior?	
Odd, even, or neither?	

Station \#

Equation

Characteristics	
Domain?	
Range?	
Vertex?	
Is the vertex a maximum or minimum point?	
Axis of symmetry?	
Intervals of increasing?	
Intervals of decreasing?	
x-intercepts (zeros)?	
y-intercepts?	
End behavior?	
Odd, even, or neither?	

Station \#

Equation

Characteristics	
Domain?	
Range?	
Vertex?	
Is the vertex a maximum or minimum point?	
Axis of symmetry?	
Intervals of increasing?	
Intervals of decreasing?	
x-intercepts (zeros)?	
y-intercepts?	
End behavior?	
Odd, even, or neither?	

Transformations of $f(x)$

$g(x)$	
$h(x)$	
$q(x)$	
$r(x)$	

Station 1

$f(x)=x^{2}$
Step 1: Find $f(x)$.

x	$f(x)$
-2	
-1	
0	
1	
2	

Step 2: Plot the coordinates using the pegs.

Step 3:

Connect the pegs using brown yarn.

©(C2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

Station 1

$f(x)=x^{2}$
Step 1: Find $f(x)$.

x	$f(x)$
-2	4
-1	$\mathbb{1}$
0	0
1	$\mathbb{1}$
2	4

Step 2: Plot the coordinates using the pegs.

Step 3:

Connect the pegs using brown yarn.
©2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

Characteristics of $f(x)$

Domain?
 Range?
 Vertex?

Is the vertex a maximum or minimum point?

Axis of symmetry?

Intervals of increasing?
Intervals of decreasing?
x-intercepts (zeros)?
y-intercepts?
End behavior?
Odd, even, or neither?
©2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

Characteristics of $\boldsymbol{f}(\boldsymbol{x})$

Domain?	$(=\infty, \infty)$
Range?	$[0, \infty)$
Vertex?	$(0,0)$
Is the vertex a maximum or minimum point?	minimum
Axis of symmetry?	$(0, \infty)$
Intervals of increasing?	$[(\infty, 0]$
Intervals of decreasing?	$(0,0)$
x-intercepts (zeros)?	$(0,0)$
y-intercepts?	Rises on the left \& right
End behavior?	even
Odd, even, or neither?	

[^0]
© 2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

Station 2

$g(x)=(x+2)^{2}+2$
Step 1: Find $g(x)$.

x	$g(x)$
0	
-1	
-2	
-3	
-4	

Step 2:
Plot the coordinates
using the pegs.

Step 3:

Connect the pegs using blue yarn.
©2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

Station 2

$g(x)=(x+2)^{2}+2$
Step 1: Find $g(x)$.

x	$g(x)$
0	6
-1	3
-2	2
-3	3
-4	6

Step 2:
Plot the coordinates
using the pegs.

Step 3:
Connect the pegs using blue yarn.

©2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

Characteristics of $g(x)$

Domain?

Range?

Vertex?

Is the vertex a maximum or minimum point?

Axis of symmetry?

Intervals of increasing?
Intervals of decreasing?
x-intercepts (zeros)?
y-intercepts?
End behavior?
Odd, even, or neither?
©2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

Characteristics of $g(x)$

Domain?	$(=\infty, \infty)$
Range?	$[2, \infty)$
Vertex?	$(-2,2)$
Is the vertex a maximum or minimum point?	minimum
Axis of symmetry?	$\pi=-2$
Intervals of increasing?	$[=2, \infty)$
Intervals of decreasing?	$(-\infty,-2]$
x-intercepts (zeros)?	$n 0 n e$
y-intercepts?	$(0,6)$
End behavior?	Rises on the left \& right
Odd, even, or neither?	nelther

Station 3

$$
h(x)=-(x-2)^{2}-2
$$

Step 1: Find $h(x)$.

x	$h(x)$
0	
1	
2	
3	
4	

Step 2: Plot the coordinates using the pegs.

Step 3:

 Connect the pegsusing yellow yarn.
© 2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

Station 3

$$
h(x)=-(x-2)^{2}-2
$$

Step 1: Find $h(x)$.

x	$h(x)$
0	-6
1	-3
2	-2
3	-3
4	-6

Step 2:
 Plot the coordinates using the pegs.

Step 3:
Connect the pegs using yellow yarn.
©2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

Characteristics of $\boldsymbol{h}(\boldsymbol{x})$

Domain?

Range?

Vertex?

Is the vertex a maximum or minimum point?

Axis of symmetry?

Intervals of increasing?
Intervals of decreasing?
x-intercepts (zeros)?
y-intercepts?
End behavior?
Odd, even, or neither?
©2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

Characteristics of $\boldsymbol{h}(\boldsymbol{x})$

Domain?	$(=\infty, \infty)$
Range?	$(=\infty,=2]$
Vertex?	$(2,-2)$
Is the vertex a maximum or minimum point?	maximum
Axis of symmetry?	$(=-2,2]$
Intervals of increasing?	$[2, \infty)$
Intervals of decreasing?	$n 0 n e$
x-intercepts (zeros)?	$(0,=6)$
y-intercepts?	Ealls on the left \& right
End behavior?	nelther
Odd, even, or neither?	

Station 4

$q(x)=1 / 2(x+2)^{2}-2$

Step 1: Find $q(x)$.

x	$q(x)$
2	
0	
-2	
-4	
-6	

Step 2:
Plot the coordinates using the pegs.

Step 3:
Connect the pegs using green yarn.
©2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

Station 4

$q(x)=1 / 2(x+2)^{2}-2$

Step 1: Find $q(x)$.

x	$q(x)$
2	6
0	0
-2	-2
-4	0
-6	6

Step 2:
Plot the coordinates using the pegs.

Step 3:

Connect the pegs using green yarn.

Characteristics of $q(x)$

Domain?	
Range?	
Vertex?	
Is the vertex a maximum or minimum point?	
Axis of symmetry?	
Intervals of increasing?	
Intervals of decreasing?	
x-intercepts (zeros)?	
y-intercepts?	
End behavior?	
Odd, even, or neither?	

[^1]
Characteristics of $q(x)$

Domain?	$(=\infty, \infty)$
Range?	$[=2, \infty)$
Vertex?	$(=2,=2)$
Is the vertex a maximum or minimum point?	minimum
Axis of symmetry?	$\pi=-2$
Intervals of increasing?	$[=2, \infty)$
Intervals of decreasing?	$(-\infty,-2]$
x-intercepts (zeros)?	$(0,0) \&(=4,0)$
y-intercepts?	$(0,0)$
End behavior?	Rises on the left \& right
Odd, even, or neither?	nelther

Station 5

$r(x)=-2(x-2)^{2}+2$
Step 1: Find $r(x)$.

x	$r(x)$
0	
1	
2	
3	
4	

Step 2:
Plot the coordinates
using the pegs.

Step 3:
Connect the pegs
using red yarn.
©2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

Station 5

$$
r(x)=-2(x-2)^{2}+2
$$

Step 1: Find $r(x)$.

x	$r(x)$
0	-6
1	0
2	2
3	0
4	-6

Step 2:
Plot the coordinates using the pegs.
Step 3:
Connect the pegs
using red yarn.

©2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

Characteristics of $\boldsymbol{r}(\boldsymbol{x})$

Domain?	
Range?	
Vertex?	
Is the vertex a maximum or minimum point?	
Axis of symmetry?	
Intervals of increasing?	
Intervals of decreasing?	
x-intercepts (zeros)?	
y-intercepts?	
End behavior?	
Odd, even, or neither?	

Characteristics of $r(x)$

Domain?	$(=\infty, \infty)$
Range?	$(=\infty, 2]$
Vertex?	$(2,2)$
Is the vertex a maximum or minimum point?	maximum
Axis of symmetry?	$(=\infty, 2]$
Intervals of increasing?	$[2, \infty)$
Intervals of decreasing?	$n 0 n e$
x-intercepts (zeros)?	$(0,=6)$
y-intercepts?	End behavior?
Odd, even, or neither?	nelther

Transformations of $f(x)$

©2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

Transformations of $f(x)$	
$g(x)$	$g(x)=(x+2)^{2}+2$
$h(x)$	$h(x)=-(x-2)^{2}-2$
$q(x)$	$q(x)=\mathbb{1} / 2(x+2)^{2}-2$
$r(x)$	$r(x)=-2(x-2)^{2}+2$

[^2]
Transformations of $f(x)$

Horizontal shift $\leftarrow 2$ units

 Vertical shift $\uparrow 2$ unitsHorizontal shift $\rightarrow 2$ units
Vertical shift $\downarrow 2$ units
Reflection across the x-axis
Horizontal shift $\leftarrow 2$ units
$q(x) \quad$ Vertical shift $\downarrow 2$ units
Vertical compression by a factor of $1 / 2$
Horizontal shift $\rightarrow 2$ units
Vertical shift $\uparrow 2$ units
Vertical stretch by a factor of 2
Reflection across the x-axis
©2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

[^0]: ©(2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

[^1]: ©2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

[^2]: ©(C2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

